Deriving Kernels from MLP Probability Estimators

نویسندگان

  • Ivan Titov
  • James Henderson
چکیده

In multi-class categorization problems with a very large or unbounded number of classes, it is often not computationally feasible to train and/or test a kernel-based classifier. One solution is to use a fast computation to pre-select a subset of the classes for reranking with a kernel method, but even then tractability can be a problem. We investigate using trained multilayer perceptron probability estimators to derive appropriate kernels for such problems. We propose a kernel derivation method which is specifically designed for reranking problems, and a more efficient variant of this method which is specifically designed for neural networks with large numbers of output units. When applied to a neural network model of natural language parsing, these new methods achieve state-of-the-art performance which improves over the original model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Kernel Estimators in Nonparametric Binomial Regression

This paper is concerned with nonparametric binomial regression. Two kernel-based binomial regression estimators and their bias-adjusted versions are proposed, whose kernels are weighted by the inverses of variance estimators of the observed proportion at each covariate. Asymptotic theories for deriving asymptotic mean squared errors (AMSEs) of proposed estimators are developed. Comparisons with...

متن کامل

Spectral Regularization for Support Estimation

In this paper we consider the problem of learning from data the support of a probability distribution when the distribution does not have a density (with respect to some reference measure). We propose a new class of regularized spectral estimators based on a new notion of reproducing kernel Hilbert space, which we call “completely regular”. Completely regular kernels allow to capture the releva...

متن کامل

Spectral Regularization for Support Estimation

In this paper we consider the problemof learning fromdata the support of a probability distribution when the distribution does not have a density (with respect to some reference measure). We propose a new class of regularized spectral estimators based on a new notion of reproducing kernel Hilbert space, which we call “completely regular”. Completely regular kernels allow to capture the relevant...

متن کامل

Density Estimation of Censored Data with Infinite-Order Kernels

Higher-order accurate density estimation under random right censorship is achieved using kernel estimators from a family of infinite-order kernels. A compatible bandwidth selection procedure is also proposed that automatically adapts to level of smoothness of the underlying lifetime density. The combination of infinite-order kernels with the new bandwidth selection procedure produces a consider...

متن کامل

Connectionist Probability Estimators in Hmm Using Genetic Clustering Application for Speech Recognition and Medical Diagnosis

The main goal of this paper is to compare the performance which can be achieved by five different approaches analyzing their applications’ potentiality on real world paradigms. We compare the performance obtained with (1) Multi-network RBF/LVQ structure (2) Discrete Hidden Markov Models (HMM) (3) Hybrid HMM/MLP system using a Multi LayerPerceptron (MLP) to estimate the HMM emission probabilitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005